If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+36=4x^2
We move all terms to the left:
6x+36-(4x^2)=0
determiningTheFunctionDomain -4x^2+6x+36=0
a = -4; b = 6; c = +36;
Δ = b2-4ac
Δ = 62-4·(-4)·36
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{17}}{2*-4}=\frac{-6-6\sqrt{17}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{17}}{2*-4}=\frac{-6+6\sqrt{17}}{-8} $
| 39v+80=9v+10(8+3v) | | 3x+20=5x-50Y | | 7y-13+2y+8=40 | | -7=y/2-3 | | f/3+–19=–15 | | f3+–19=–15 | | (x-11)^2=-4 | | f3+ –19=–15 | | 6b/12+b=20 | | Zž-4iž=4-8i | | r/9+4=21 | | 5(h-6)=5h-14 | | 9w+68=198 | | -12-2x=1-(7x-7) | | 7x-5-9x=-4x-9-3x | | 3y-22=7y-14 | | 4(3t+4)=80 | | -u+245=182 | | Y=20+6x=Y=40-4x | | 263=200-y | | g–4+ 14=17 | | 4y+38=10 | | g/–4+ 14=17 | | 7(8-9u)+53u+10u=4 | | 28x-11=360 | | 1,654+x=16,540 | | 1/2x7=1/4x-12 | | 3x-18-2x+12=5x | | (3x-82)=166 | | 50(h+3)-110=5(10h+8) | | 2πr=12 | | 8(-6w-7)=-60-48w |